Accepted Manuscript

Landslide Trends Under Extreme Climate Event

Chyi-Tyi Lee *
Graduate Institute of Applied Geology, National Central University, Taoyuan City, Taiwan, R.O.C.

Received 30 November 2015, revised 15 April 2016, accepted 28 May 2016
DOI: 10.3319/TAO.2016.05.28.01(CCA)
*Corresponding author: ct@ncu.edu.tw

This is a PDF file of an unedited manuscript which has been accepted for publication. But the manuscript will undergo copyediting, typesetting, pagination, and proofreading process that might lead to differences between this version and the final version of publication.
LANDSLIDE TRENDS UNDER EXTREME CLIMATE EVENT

Chyi-Tyi Lee
Graduate Institute of Applied Geology, National Central University,
No.300, Jhongda Rd., Jhongli District, Taoyuan City, 32001, Taiwan
E-mail: ct@ncu.edu.tw

Submit to TAO Special Issue in November, 2015

Correspondence author:
Chyi-Tyi Lee
<ct@ncu.edu.tw>
Graduate Institute of Applied Geology
National Central University
300 Jhongda Rd, Jhongli District,
Taoyuan City, 32001, Taiwan
R.O.C.
ABSTRACT

Does the incidence of landslides increase with rainfall? And to what extent will landslides occur during previously unexperienced extreme-rainfall events? This becomes important to know under expected climate changes. This research studies the relationship between landslide density and rainfall depth in landslide susceptibility zones on the Zengwen River basin in southwestern Taiwan. The relationship is then applied to predict landslide occurrence during a near future rainfall event and a predicted extreme rainfall at the end of this century as estimated from statistical and dynamical downscaling of precipitation. The results indicate that increase in the incidence of landslides with rainfall between a lower rainfall threshold and an upper range of values. Near the upper range of values, the rate of increase in the incidence of landslides slows, tending to become saturated at a certain landslide density. This finding is different from models proposed in previous studies which show quadratic increase with large rainfalls. Different rates of increase of landslides with large amounts of rainfall will result in different hazards which may require special attention.

Keywords: Landslides, rainfall events, landslide trend, extreme climate.

1. INTRODUCTION

Landslides are secondary or induced features after a triggering event, such as an earthquake, or heavy or prolonged rainfall. Rain-induced landslides are the most common type among different triggering events. Landslides occur when rainfall
accumulation reaches a certain amount and pore water pressure in the soil/rock mass reaches a critical value causing sliding. The existence of a rainfall threshold has long been discussed (Caine, 1980; Crosta, 1998; Guzzetti et al., 2007, 2008; Saito, et al., 2010). When the rainfall exceeds a threshold, the number and area of landslides may start to increase. Beyond the threshold, Daogi (1971) recommended using a quadratic model to describe the relationship between the area of the triggered landslides and the amount of rainfall accumulation. Finlay et al. (1997) investigated the relationship between the probability of landslide occurrence and rainfall in Hong Kong. They utilized both a quadratic model and a cubic model that fit the rainfall data and number of landslides well although they also mentioned that the cubic model will exceed the physical limit of the number of features on Hong Kong Island. However, if there is indeed a quadratic increase in landslides with rainfall, this trend bodes ill for the future environment under extreme climate changes. The impact may include an increase of erosion rates and sedimentation rates, increased incidences of flooding, and even increases in seismicity (Steer et al., 2014), besides the increase in the number and severity of landslides.

Is there an upper limit density of landslides in mountainous areas? According to our landslide database in Taiwan, the event-triggered landslide density by heavy typhoon rainfall ranges from 0.5% to nearly 5% in each drainage basin and for each storm event. The maximum event-triggered landslide density caused by the 2008 Typhoon Morakot in the Gaoping River basin in southern Taiwan was 4.89%. There should be a physical limit where the safety conditions remain unchanged after the slope
is saturated and no more water is seeping into the ground. This is easily modelled by a rainfall infiltration model showing that the landslide density reaches a constant value after a certain cumulative amount of rainfall (e.g., Tan et al., 2009). Therefore, there may exist an upper rainfall bound for sliding on a slope, beyond which the landslide number/area would not increase. This study tests the hypothesis by using actual data collected at the Zengwen River basin in southwestern Taiwan, and discusses the trend of increased landslides under extreme rainfall events.

2. DATA

2.1 Terrain Data

Taiwan is a mountainous island with an area of 36,188 km² where the highest peak, Yushan, reaches an elevation of 3,952 m. Tectonically, Taiwan is on the active collision zone between the Asiatic Continent and the Luzon Arc, where the arc-continent collisions started in the Late Miocene and are still vigorously taking place (e.g., Teng, 1990). The region is characterized by active crustal deformation (Bonilla, 1975, 1977; Yu et al., 1997), frequent earthquakes (Hsu, 1971; Tsai et al., 1977), numerous typhoons and high erosion rates (Dadson et al., 2003). The Taiwan region has a subtropical climate with an average annual precipitation of about 3,000 mm and an average temperature of about 20°C. Physical and chemical weathering are significant and rapid, and slope wash and colluvium are widespread on hillsides.

The Zengwen River basin, located in southwestern Taiwan, geologically belongs
to the Western Foothills Neogene sedimentary province (Ho, 1976) (Fig. 1). The
mountain terrain of the drainage basin is the target area examined in this study and has
an area of 929.6 km². Elevations in the study area range from 40 m in the southwest to
2,610 m in the northeast, with generally rugged topography. Slopes with gradients
greater than 55% cover 55.2% of the study area, slopes with gradients of 30-55%
occupy 39.6% of the area, while only 5.2% is comprised of gentle slopes with gradients
less than 30%. The rocks are composed of folded and faulted Miocene and Pliocene
sandstone and mudstone. Terraces on the river sides are composed of sandy gravels and
they may be covered by lateritic soils on high terraces. Slopes are commonly mantled
by shallow slope washes or colluvium. Nearly 90% of the study area is forested. The
climate is influenced by typhoons in summer with winter being the dry season.

Geological maps (1:50,000) were obtained from the Central Geological Survey,
Taiwan. Each map sheet was overlaid with a shaded Digital Elevation Model (DEM)
and visually inspected in a Geographic Information System (GIS). Some abnormal
boundaries, mostly associated with alluvial and terrace deposits, were corrected. A
shaded geological map is shown in Figure 2.

The 5x5 m DEMs were acquired from the Department of Interior, Taiwan and were
visually checked using a color-shaded image of the DEM. When a defect of more than
a few pixels in size was found, this portion was re-digitized from a 1:5,000 scale
photo-based contour map. Other abnormal random points were corrected using a
median filter. Finally the DEM was smoothed a little and reduced to a 10 m grid for
subsequent analyses.
2.2 Landslide Inventories

False-color SPOT images were used for landslide recognition. Image interpretation was based on image tone, shape, association, and also personal experience. The landslides were digitized in GIS and attributes assigned to establish a landslide map and table. Each landslide map was then checked against recent rectified aerial photographs via the GIS. Most misinterpretations due to man-made features or cultivated land could be recognized during this comparison. The landslide tables were further modified using ground data obtained from field checks, and a landslide inventory was formed. Landslide types, which include disruptive shallow landslides, cohesive deep-seated landslides, and others, were noted after examining the characteristics of the landslide’s shape, scarring, and deposition on SPOT images, photo-based maps, and by field checking. These data were also recorded as attributes for each landslide object in the GIS.

Landslide deposits were identified by comparing the GIS landslide layer with a set of new 1:5,000 scale photo-based contour maps. The slope angle or concentration of contour lines was used to differentiate deposit from sliding and source areas. The final GIS landslide inventory included a detailed description of the date/event, source/deposit, size and type of each landslide object. Finally, pre-event, post-event, and event-triggered landslide inventories were made.

Event-triggered landslides were identified by comparing the pre-event and post-event landslide inventories, and an event landslide inventory was produced. An
event-triggered landslide could be absent from the pre-event landslide inventory, or present in both inventories. Landslides found in both inventories were carefully examined for changes in tone and/or enlargement in extent, for determination of an event-triggered landslide. Four event-triggered landslide inventories (Fig. 3), were completed in this study, and the events and images used are listed in Table 1. Both multi-spectral (XS) and panchromatic (PAN) images were used, and a fusing technique (Liu, 2000) was utilized to produce a higher resolution false-color composite image to facilitate landslide recognition. The pixel resolution after fusing is 6.25m for SPOT 1-4, and is 2.5m for SPOT 5.

2.3 Rainfall Data

Hourly rainfall data from 166 rain gauge stations in and around the study area were used to process rainfall parameters at each station, and then these point data were spatially interpolated to each raster cell in the study area. Kriging with varying local means (Goovaerts, 2000) was used to include elevation data as an auxiliary variable in the interpolation of rainfall value. The data for maximum hourly rainfall, rolling 24-hour rainfall, and total event rainfall for Typhoons Herb, Haitang, Kalmaegi, and Morakot were processed. Distributions of the total event rainfalls for the four Typhoon events are shown in Figure 4.

Rainfall predictions at near future and at the end of this century, estimated from statistical and dynamical downscaling of precipitation, are also included in this study to facilitate probing for landslide trends under extremes of climate. Two sets of simulated
rainfall adopted from the Taiwan Climate Change Projection and Information Platform, TCCIP, are used to estimate landslide occurrence in the study area. The first set data represents a near future rainfall event from July 8 to July 11, 2017 (Fig. 5a). The second set data represents end of the century rainfall from July 14 to July 17, 2090 (Fig. 5b). Details of the method and procedure for the simulated rainfalls are referred to Su, et al. (2014).

3. ANALYSIS AND RESULTS

The purpose of analysis is to find the relationship between landslide density and rainfall. However, the relationship is not so simple, because slope gradient, soil strength, hydrologic parameters, and others do also control the landslide density. But, it is long being known that the combined effect of the above-mentioned parameters is the landslide susceptibility (Aleotti and Chowdury, 1999; Carrara, 1983; Guzzetti et al., 1999; Varnes, 1984), which differentiates a region into several successive classes representing relative slope stability. Therefore, if we fix the susceptibility or take the susceptibility as an independent variable in the density-rainfall relationship, it could become possible.

3.1 Terrain Susceptibility Model

In building a susceptibility model, first, effective susceptibility factors (Lee, 2013) for landslides were selected. These include the slope gradient, slope aspect, slope roughness, tangential curvature, relative slope height, lithologic units, and event total
rainfall. Then, training data were selected from the Herb event landslide inventory and the Haitang event landslide inventory for building a susceptibility model. The methodology used in the landslide susceptibility analysis basically follows that used by Lee et al. (2008).

This analysis is a 10-m grid-based study. In total 62,678 landslide grid-cells, randomly selected non-landslide cells, and relevant factor values for each cell were selected for logistic regression. The logistic model is formulated as follows:

\[
\ln \left(\frac{p}{1-p} \right) = -1.021L_1 + 0.848L_2 + 0.59L_3 + 1.052L_4 + 1.076L_5 + 0.988L_6 + 0.536L_7 + 1.074L_8 + 3.014A_1 + 3.918A_2 + 4.397A_3 + 4.622A_4 + 4.566A_9 + 4.321A_10 + 3.717A_11 + 3.018A_12 + 0.796F_1 + 0.215F_2 + 0.192F_3 - 0.302F_4 + 0.135F_5 - 5.286 ,
\]

where \(L_1-L_8\) are lithologic units as listed in Table 2; \(A_1-A_8\) are slope aspect factors; \(F_1-F_4\) are the causative factors, slope gradient, slope roughness, tangential curvature, relative slope height, respectively; \(F_5\) is the triggering factor – event total rainfall; and \(p\) is the occurrence probability. The value of \(p\) could be taken as the landslide susceptibility from which a susceptibility map is drawn (Fig. 6). This model is evaluated with fairly good results with an Area Under Curve (AUC) of the success rate curve (Chung and Fabbri, 1999) of 0.776. This model is then validated using the Kalmaegi event landslides and the Morakot event landslides. The prediction rate (Chung and Fabbri, 2003) of Kalmaegi event landslides and the Morakot event landslides are 0.751 and 0.708, respectively. The success rate and the prediction rates are fairly good and indicate it is an acceptable model.

The aforementioned susceptibility model is an event-based model that is trained
with event-triggered landslides and a triggering factor (Lee et al., 2008), and thus the model is event dependent (Fig. 6a). However, if we remove the triggering factor from the model, then it becomes event independent (Fig. 6b), supposing that the triggering factor is independent of other causative factors. There is a basic susceptibility in a region regardless of what event landslides are used to build a model (Lee, 2015). Fig. 6b could be a basic susceptibility model for the present study region.

3.2 Landslide and Rainfall Relationship

We used the four event landslide inventories and rainfall value at each corresponding grid of a triggered landslide to test the relationship between the probability of failure (landslide density) and event total rainfall at each basic susceptibility bin. The result shows that the probability of failure increases with an increase in the rainfall and also an increase in the susceptibility (Fig. 7a). A fitting surface of probability of landslide failure using a rainfall parameter and the basic susceptibility as two independent variables was done. The result is shown in Fig. 7b and equation (2) as follows:

\[y = \lambda(18.3477\lambda + 8.4982)(1 - e^{-0.0000965 \left(\frac{x}{100} \right)^{3.2125}}), \]

where \(x \) is event total rainfall in mm; \(y \) is the probability of landslide failure; and \(\lambda \) is the basic susceptibility.

This function is basically a Weibull cumulative distribution function, if the basic susceptibility \(\lambda \) is fixed. It shows that probability of landslide failure increase when
rainfall depth is between a lower threshold and an upper bound, and near the upper bound, the incidence of landslide failure increases slowly and tends towards saturation. This finding is different from models proposed in previous studies which indicate that the rate of increase follows a quadratic trend with large amounts of rainfall.

3.3 Prediction of Landslides for Rainfall Scenarios

Applying the landslide susceptibility model and the above-mentioned relationship, and substituting in a scenario rainfall, landslides may be predicted. Two sets of simulated rainfall data adopted from TCCIP are used to estimate landslide occurrence in the study area.

The first set of data, representing a near future rainfall event from July 8 to July 11, 2017 are used to produce the probability of landslide failure map shown in Fig. 8a, and predict a total landslide area of 19,631,806m² (2.11% study area). The second set of data, representing rainfall at end of the century from July 14 to July 17, 2090, result in the probability of landslide failure map shown in Fig. 8b, and predict a total landslide area of 25,885,700m² (2.78% study area). The difference in landslide area between these 73 years is 6,253,894m² (0.67% of the study area).

4. DISCUSSION

It is clear from previous studies and the present study that the incidence and severity of landslides increase with rainfall, when the amount exceeds a threshold. The
problem is, does an upper limit of landslide density exist? Will the rate of increase become lower or level off at a certain landslide density? The present study indicates that the rate of increase is neither constant nor quadratic with increased rainfall, but may tend to level off after the amount of rainfall exceeds a certain value.

The physical meaning of the upper-boundary to the landslide trend may be realized by using a rainfall infiltration model. There is a limit to the groundwater penetrating the slope surface, because the rainfall becomes surface runoff; there is no further increase of pore water pressure in the slope and no further lowering of the factor of stability of the slope. The quadratic model proposed by Daogi (1971) and Finlay et al. (1997) is not appropriate for this purpose and requires modification.

The present proposed model is a Weibull cumulative distribution function, if the susceptibility value is fixed. This model appears to conveniently fit the landslide and rainfall relationship in the present study area. The landslide incidence increases with the accumulated rainfall between the lower rainfall threshold and through a range of values beyond which the rate of increase slows and tends to become saturated at a certain landslide density. This model is found to be applicable for drainage basins which we have tested (e.g., the Gaoping River basin) (Lee, 2014), however, more testing is needed to see if it can be applied in other climatic zones around the world.

The proposed relationship is applied to predict landslide areas for two Typhoon event scenarios. It can be seen that the area would increase by 31.86% after a single rainstorm event during the period from 2017 to 2090. We also calculated the volume of rainfall for the two rainstorm event scenarios, which shows an increase of rain volume
by 22.61%. Further testing is carried out by applying the new model to find the trend for different homogeneous rainfall events at the Zengwen River basin (Fig. 9). Again, the trend fits a Weibull cumulative distribution function, when rainfall depths are homogeneously distributed throughout the study area. The rainfall threshold is about 200 mm, and the range is about 2,000 mm, as shown in Fig. 9. The total landslide areas from both the 2017 event and the 2090 event are very similar to that predicted by the homogeneous rainfall trend, at values of 1,355 mm and 1,662 mm, respectively. The rate of increase in landslide area becomes lower and lower after the cumulative rainfall exceeds the range of about 2,000 mm.

The present proposed landslide and rainfall relationship may be good for understanding landslide trends and predicting landslide density under an extreme climate event. However, the model is localized and only valid for the study area, the mountainous terrain of the Zengwen River basin, although the proposed methodology and function form may be used in other drainage basin in Taiwan and around the world.

5. CONCLUSIONS AND RECOMMENDATIONS

A new relationship between landslide density and rainfall depth is proposed in the present study based on landslide and rainfall data sets for the mountainous terrain of the Zengwen River basin in southwestern Taiwan. This relationship basically follows a Weibull cumulative distribution function, if the landslide susceptibility value is fixed. The relationship is applied to find the landslide trend under different homogeneous rainfalls in the study area. It is also applied to predict the landslide occurrence for a
near future rainfall event and a rainfall event at the end of this century, which is estimated from the statistical and dynamical downscaling of the precipitation. The results indicate that area of landslides in the study area will increase by 31.86% with an increase in rainfall volume of 22.61% from 2017 to 2090. It is also noted that the rate of increase in landslides may become lower when the event cumulative rainfall exceeds about 2,000 mm.

This new landslide and rainfall relationship has also been tested in other drainage basins in Taiwan, with successful results. However, more testing is still needed in other climatic zones around the world.

Acknowledgements:

This research was supported by the Ministry of Science and Technology, R.O.C., under Grant Number MOST104-2621-M-019-001.

References

Caine, N., 1980: The rainfall intensity: duration control of shallow landslides and
Geology, 15, 403-427.
Chung, C. F., and A. G. Fabbri, 1999: Probabilistic prediction models for landslide
Chung, C. F. and A. G. Fabbri, 2003: Validation of spatial prediction models for
landslide hazard mapping, Natural Hazards, 30, 451-472.
Crosta, G., 1998: Regionalization of rainfall thresholds: an aid to landslide hazard
Dadson, S. J., N. Hovious, H. Chen, B. W. Dade, S. D. Willett, J. C. Hu, M. J. Horng,
M. C. Chen, C. P. Stark, D. Lague, and J. C. Lin, 2003: Links between erosion,
Daogi, T., 1971: Rainfall caused hillside collapses. Journal of the Japan Society of
Erosion Control Engineering, 79, 21-34. (In Japanese)
Finlay, P. J., R. Fell, P. K. Maguire, 1997: The relationship between the probability of
Goovaerts, P., 1997: Geostatistics for natural resources evaluation, Oxford University
Press, 483pp.
Guzzetti, F., A. Carrara, M. Cardinali, and P. Reichenbach, 1999: Landslide Hazard
Evaluation: A Review of Current Techniques and Their Application in a

Table 1. Typhoon events and spot images used in the study

<table>
<thead>
<tr>
<th>Typhoon</th>
<th>Duration</th>
<th>Dates of spot images used</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhoon Herb</td>
<td>1996/07/29~</td>
<td>Pre-event: 96/01/28, 96/04/17</td>
<td>SPOT1-SPOT4</td>
</tr>
<tr>
<td></td>
<td>1996/08/01</td>
<td>Post-event: 96/08/21, 96/11/08, 96/12/05</td>
<td></td>
</tr>
<tr>
<td>Typhoon Haitang</td>
<td>2005/07/16~</td>
<td>Pre-event: 05/01/23, 05/03/06, 05/03/21</td>
<td>SPOT5</td>
</tr>
<tr>
<td></td>
<td>2005/07/20</td>
<td>Post-event: 05/11/26, 05/11/27, 05/12/24</td>
<td></td>
</tr>
<tr>
<td>Typhoon Calmaegi</td>
<td>2008/07/16~</td>
<td>Pre-event: 07/12/21</td>
<td>SPOT5</td>
</tr>
<tr>
<td></td>
<td>2008/07/18</td>
<td>Post-event: 08/11/12, 08/11/28</td>
<td></td>
</tr>
<tr>
<td>Typhoon Morakot</td>
<td>2009/08/05~</td>
<td>Pre-event: 09/01/03</td>
<td>SPOT5</td>
</tr>
<tr>
<td></td>
<td>2009/08/10</td>
<td>Post-event: 09/09/20, 09/11/01, 09/11/02</td>
<td></td>
</tr>
</tbody>
</table>

Note: The resolution of SPOT1-4 is 6.25 m, and that of SPOT5 is 2.5 m.

Table 2 Stratigraphy and lithologic units delineated in the study area

<table>
<thead>
<tr>
<th>Unit</th>
<th>Lithology</th>
<th>Stratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gravel, sand, silt and clay</td>
<td>Alluvium</td>
</tr>
<tr>
<td>1</td>
<td>Gravel, sand, silt, clay, and lateritic soil.</td>
<td>Terrace deposits</td>
</tr>
<tr>
<td>2</td>
<td>Mudstone, sandy shale intercalated with sandstone</td>
<td>Yuching Shale, Peiliao Shale</td>
</tr>
<tr>
<td>3</td>
<td>Alternation of sandstone and shale</td>
<td>Chutouchi Formation</td>
</tr>
<tr>
<td>4</td>
<td>Shale, partly intercalated with sandstone</td>
<td>Maopu Shale</td>
</tr>
<tr>
<td>5</td>
<td>Alternation of sandstone and shale</td>
<td>Ailiaochiao Formation</td>
</tr>
<tr>
<td>6</td>
<td>Shale and sandy shale</td>
<td>Yenshuikeng Shale</td>
</tr>
<tr>
<td>7</td>
<td>Massive sandstone, partly intercalated with shale</td>
<td>Tangenshan Sandstone</td>
</tr>
<tr>
<td>8</td>
<td>Bedded sandstone, alternation of sandstone and shale, shale.</td>
<td>Changchihkeng Formation, Hunghuatsu Formation, and Sanming Shale</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Map of the geology and location of the study area (thick line).

Figure 2. Geological Map of the study area.

Figure 3. Event-triggered landslide inventories in the study area. (a) Typhoon Herb triggered landslides; (b) Typhoon Haitang triggered landslides; (c) Typhoon Kalmaegi triggered landslides; (d) Typhoon Morakot triggered landslides.

Figure 4. Cumulative rainfalls in the study area. (a) Typhoon Herb; (b) Typhoon Haitang; (c) Typhoon Kalmaegi; (d) Typhoon Morakot.

Figure 5. Rainfall predictions estimated from statistical and dynamical downscaling of precipitation: (a) near future rainfall event from July 8 to July 11, 2017; (b) rainfall at the end of the century from July 14 to July 17, 2090 (adopted from the Taiwan Climate Change Projection and Information Platform, TCCIP).

Figure 6. Landslide susceptibility maps for the mountainous terrain of the Zengwen River basin in southwestern Taiwan: (a) susceptibility map with triggering factor; (b) susceptibility map without triggering factor (basic susceptibility map). Stable area is assigned to the area where slope gradient is less than 10% and area is larger than 1 ha., rock area is assigned to those very steep rock cliffs where area is larger than 0.5 ha. Both stable area and rock area are not included in building the model and further use.

Figure 7. Landslide and rainfall relationship for the mountainous terrain of the Zengwen River basin in southwest Taiwan: (a) fit for each susceptibility bin; (b) total fit (equation is shown in the text).

Figure 8. Landslide predictions based on rainfall estimated from statistical and dynamical downscaling of precipitation: (a) near future rainfall event, 2017, predicting a total landslide area of 19,631,806m2 and 2.11% of the study area;
(b) rainfall at the end of the century, 2090, predicting a total landslide area of 25,885,700m² and 2.78% of the study area. Stable area and rock area are defined in Figure 6.

Figure 9. Landslide trend under different homogenous precipitation amounts for the Zengwen River basin. The open circles indicate the points calculated with eq. (2), the thick red line indicates the fit of these points to a Weibull cumulative distribution function, the solid purple circle indicates the predicted landslide area for the near future rainfall event, and the solid blue circle indicates the predicted landslide area for a rainfall event at end of the century.
Figure 1. Map showing the geology and location of the study area (thick line).
Figure 2. Geological Map of the study area.
Figure 3. Event-triggered landslide inventories in the study area. (a) Typhoon Herb triggered landslides; (b) Typhoon Haitang triggered landslides; (c) Typhoon Kalmaegi triggered landslides; (d) Typhoon Morakot triggered landslides.
Figure 4. Cumulative rainfalls in the study area. (a) Typhoon Herb; (b) Typhoon Haitang; (c) Typhoon Kalmaegi; (d) Typhoon Morakot.
Figure 5. Rainfall predictions estimated from statistical and dynamical downscaling of precipitation: (a) near future rainfall event from July 8 to July 11, 2017; (b) rainfall at end of the century from July 14 to July 17, 2090 (adopted from the Taiwan Climate Change Projection and Information Platform, TCCIP).
Figure 6. Landslide susceptibility maps for the mountainous terrain for the Zengwen River basin in southwestern Taiwan: (a) susceptibility map with triggering factor; (b) susceptibility factor without triggering factor (basic susceptibility map). Stable area is assigned to the area where slope gradient is less than 10% and area is larger than 1 ha., rock area is assigned to those very steep rock cliffs where area is larger than 0.5 ha. Both stable area and rock area are not included in building the model and further use.
Figure 7. Landslide and rainfall relationship for the mountainous terrain of the Zengwen River basin in southwestern Taiwan: (a) fit for each susceptibility bin; (b) total fit (equation is shown in the text).
Figure 8. Landslide predictions based on rainfall estimated from statistical and dynamical downscaling of precipitation: (a) near future rainfall event, 2017, predicting a total landslide area of 19,631,806 m² and 2.11% of the study area; (b) rainfall at the end of the century, 2090, predicting a total landslide area of 25,885,700 m² and 2.78% of the study area. Stable area and rock area are defined in Figure 6.
Figure 9. Landslide trend under different homogenous precipitation amounts at the Zengwen River basin. The open circles indicate the points calculated with eq. (2), the thick red line indicates the fit of these points to a Weibull cumulative distribution function, the solid purple circle indicates the predicted landslide area for the near future rainfall event, and the solid blue circle indicates the predicted landslide area for a rainfall event at the end of the century.